ЗАДАНИЯ НА УПРАВЛЯЕМУЮ САМОСТОЯТЕЛЬНУЮ РАБОТУ (12 часов)

ЗАНЯТИЕ 1 (2 часа)

Tema 2. Инструментальные средства электронных таблиц Microsoft Excel для анализа и обработки данных

Задание 1

1. В таблице Excel наберите таблицу результатов измерения кистевой динамометрии 12 школьников:

№	Фамилия	Линомомотрия иг				
Π/Π	Р амилим	Динамометрия, кг				
1	Иванов	11				
2	Петров	12				
3	Сидоров	10				
4	Михайлов	17				
5	Антонов	15				
6	Федоров	6				
7	Александров	14				
8	Яковлев	15				
9	Романов	13				
10	Борисов	13				
11	Прохоров	12				
12	Васильев	10				

- 2. Отсортируйте таблицу по результатам измерения в порядке убывания, в случае совпадения результатов в алфавитном порядке по фамилии.
- 3. Определите среднее значение, дисперсию и стандартное отклонение результатов измерения. Результаты вычислений представьте с точностью до сотых долей.
- 4. Постройте гистограмму зависимости **Фамилия Результат** с подписями данных.

Задание 2

1. В программе Excel создайте таблицу пробега лыжника. Каждый день лыжник увеличивал пробег на 10 % пробега предыдущего дня.

День	Пробег за день,	Общий пробег,
	КМ	KM
1	10	
2		
3		
4		
5		
6		
7		
8		
9		
10		

- 2. Определите пробег лыжника за второй, третий, ..., десятый день.
- 3. Определите общий пробег лыжника за первые 2, 3, ..., 10 дней тренировки.

Задание 3

В таблице приведены результаты тестирований группы студентов технического вуза в беге на 100 м, проведенных с интервалом в одну неделю.

Номер студента	1	2	3	4	5	6	7
1-й тест	14,3	14,2	13,3	13,4	14,0	12,9	13,5
2-й тест	14,5	14,0	13,7	13,2	14,0	13,2	13,3

- 1. Выполните расчёт коэффициента корреляции, используя Мастер функций программы Excel.
- 2. Рассчитайте средние арифметические значения результатов 1-го и 2-го теста и постройте гистограмму с подписями данных по результатам расчёта.
 - 3. Результаты расчётов представьте с точностью до сотых долей.

Задание 4

Дан ряд результатов измерения роста спортсменов в см: 188, 185, 190, 184, 187, 204, 198, 203, 199, 208.

- 1. Используя Мастер функций программы Excel, выполните расчёт следующих статистических характеристик данного ряда:
 - среднее арифметическое значение;
 - стандартное отклонение;
 - минимум;
 - максимум.
- 2. Результаты расчётов среднего арифметического и стандартного отклонения представьте с точностью до сотых долей.
 - 3. Постройте гистограмму ряда с подписями данных.

Задание 5

1. В программе Excel создайте таблицу «*Итоги XXVII Олимпийских игр*» с данными о результатах для шести стран:

Итоги XXVII Олимпийских игр

	Золото	Серебро	Бронза	Всего медалей	Процент медалей от общего числа
США	39	25	33		
Россия	32	28	28		
Китай	26	16	15		
Австралия	16	25	17		
Германия	14	17	26		
Франция	13	14	11		
O	бщее числ	928	100 %		

- 2. Для приведенных в таблице стран рассчитайте сумму медалей и процент медалей от общего числа. При расчете используйте абсолютную ссылку на ячейку с общим числом медалей. Процент медалей представьте с точностью до сотых долей.
- 3. Постройте гистограмму зависимости **Страна Всего медалей** с подписями значений данных.

Задание 6

1. В программе Excel определите дальность полёта снаряда без учёта силы сопротивления окружающей среды по формуле:

$$S = \left(V_0^2 \sin 2\alpha\right)/g ,$$

где S — расстояние до касания опоры, V_0 — начальная скорость, g — ускорение свободного падения, α — угол вылета (при расчёте переведите в радианы с помощью математической функции РАДИАНЫ). Ссылки на V_0 и g сделайте абсолютными.

α, градусы	α, радианы	<i>S</i> , м	V ₀ , м/с	g, м/c ²
20			10	9,81
25				
30				
35				
40				
45				
50				
55				
60				
65				
70				

- 2. Все результаты расчетов представьте с точностью до сотых долей.
- 3. Постройте точечную диаграмму с гладкими кривыми зависимости S от угла α в градусах.

Задание 7

1. Наберите в Excel таблицу, отформатируйте ее в соответствии с изображением.

	Α	В	С	D	E	F	G	Н
				Динам.	Динам.		Штанге	Генчи
1	Nº	Рост	Macca	Пр.	Лев.	ЖЕЛ	(вдох)	(выдох)
2	1	134	27	11	10	1400	31	29
3	2	132	32	12	10	1700	38	29
4	3	137	30	10	10	1700	24	22
5	4	131	44	17	17	1800	60	55
6	5	131	32	15	12	2000	25	20
7	6	119	42	6	3	1200	39	33
8	7	140	36	14	13	1400	55	50
9	8	142	39	15	13	2000	55	53
10	9	140	30	13	15	1400	57	42
11	10	129	29	13	12	1200	30	35
12	11	126	29	12	13	1400	28	23
13	12	137	39	10	14	1700	34	20
14	13	118	31	12	11	1500	63	44
15	14	123	52	11	13	1800	54	47
16	15	142	51	12	9	1800	47	28
17	16	122	27	10	11	1500	61	55
18	17	133	35	10	13	1800	46	40
19	18	136	46	10	9	1600	35	30
20	19	140	32	14	16	2000	60	42
21	20	138	31	10	10	1900	45	45
22	21	130	27	14	14	1600	52	59
าว								

- 2. Для каждого столбца, используя Мастер функций, рассчитайте:
- количество значений;
- cymmy;
- среднее значение;
- медиану;
- моду (МОДА.ОДН);
- квартиль (КВАРТИЛЬ.ВКЛ) части 1 и 3;
- дисперсию (ДИСП.В);
- стандартное отклонение (СТАНДОТКЛОН.В);
- минимум;
- максимум.
- 3. Дисперсию и стандартное отклонение представьте с точностью до сотых долей.

Рекомендуемая литература

- 1. Зудилова, Т. В. Работа пользователя в Microsoft Excel 2010 / Т. В. Зудилова, С. В. Одиночкина, И. С. Осетрова, Н. А. Осипов. СПб : НИУ ИТМО, 2012. 87 с.
- 2. Шестаков, М. П. Статистика. Обработка спортивных данных на компьютере : учеб. пособие для студентов высш. учеб. заведений физ. культуры / М. П. Шестаков. М. : ТВТ Дивизион, 2009. 248 с.
- 3. Стоцкий, Ю. А. Microsoft Office 2010 / Ю. А. Стоцкий, А. Васильев, И. Телина. СПб : Питер : Лидер, 2011. 425 с.

ЗАНЯТИЕ 2 (2 часа)

Tema 2. Инструментальные средства электронных таблиц Microsoft Excel для анализа и обработки данных

При исследовании динамики показателей выносливости юных лыжников-гонщиков выполнялось тестирование группы лыжников, при этом контрольные срезы проводились в начале и в конце подготовительного периода. Для оценки общей выносливости использовался тест — «непрерывный 5-минутный бег», результаты которого оценивались в метрах. Результаты тестирования группы из десяти юных лыжников приведены в таблице.

№ п/п	Фамилия	Результа «непрере минутн в ме	ый бег»	Прирост результата в метрах	Прирост результата в	Достигнутый результат выше	
		начальный срез	конечный срез	в метрих	процентах	среднего	
1	Антонов	1210	1280				
2	Володько	1280	1405				
3	Гусев	1335	1560				
4	Данилюк	1290	1460				
5	Жук	1325	1520				
6	Иванов	1345	1590				
7	Новик	1200	1300				
8	Петров	1380	1560				
9	Сенкевич	1260	1375				
10	Фомин	1330	1415				
	нимальное начение						
	ссимальное начение						
Среднее значение							

- 1. Создайте такую же таблицу в Excel. При вводе для переноса текста в ячейке на новую строку используйте комбинацию клавиш ALT+ENTER. Оформите таблицу по образцу. Используйте, где это необходимо, объединение ячеек, выполните выравнивание текста в ячейках, установите границы и заливку ячеек в соответствии с образцом таблицы.
- 2. Используя соответствующие статистические функции, выполните расчет минимального, максимального и среднего значений по результатам начального и конечного срезов.
- 3. С помощью формул выполните расчеты в столбцах **Прирост результата в метрах** и **Прирост результата в процентах**. Прирост результата в метрах рассчитывается как разность между результатом в конце подготовительного периода и результатом начального среза. Прирост результата в процентах для каждого лыжника рассчитывается как отношение прироста результата в метрах к результату начального среза. Для этого столбца рекомендуется использовать процентный формат.
- 4. Используя логическую функцию ЕСЛИ, в столбце **Достигнутый результат выше среднего** поставьте «да», если конечный результат

лыжника больше, чем среднее значение для конечного среза. В противном случае поставьте «**нет**». Разъяснения по логической функции ЕСЛИ можно прочитать в окне мастера функций. В функции ЕСЛИ используйте абсолютные ссылки на ячейки, где это целесообразно.

5. Результаты тестирования лыжников в конце подготовительного периода представьте в виде линейчатой диаграммы по образцу. Оформите и отформатируйте диаграмму в соответствии с образцом.

Рекомендуемая литература

- 1. Зудилова, Т. В. Работа пользователя в Microsoft Excel 2010 / Т. В. Зудилова, С. В. Одиночкина, И. С. Осетрова, Н. А. Осипов. СПб : НИУ ИТМО, 2012. 87 с.
- 2. Шестаков, М. П. Статистика. Обработка спортивных данных на компьютере : учеб. пособие для студентов высш. учеб. заведений физ. культуры / М. П. Шестаков. М. : ТВТ Дивизион, 2009. 248 с.
- 3. Стоцкий, Ю. А. Microsoft Office 2010 / Ю. А. Стоцкий, А. Васильев, И. Телина. СПб : Питер : Лидер, 2011. 425 с.

Тема 5. Выборочное наблюдение. Основные статистические характеристики выборки

Задание 1

Численность студентов Белорусского государственного университета физической культуры (объем генеральной совокупности) N=4500 чел. Самый низкий студент имеет рост $x_{\min}=1,45$ м; самый высокий — $x_{\max}=2,05$ м. Требуется определить объем выборки, необходимый для определения среднего роста студентов c точностью до $\Delta=0,05$ м на уровне значимости 0,05 (с доверительной вероятностью 0,95). Объем выборки надо найти нескорректированный и скорректированный на бесповторность отбора. Полученные дробные значения округлите до целых ϵ большую сторону.

Пример решения. Найдем нормированное отклонения t на уровне значимости 0,05 с помощью таблиц Excel, введя в произвольную ячейку формулу «=СТЬЮДЕНТ.ОБР.2X(0,05;1000)». Получим значение t=1,96. По правилу «трех сигм» найдем приблизительное значение $\sigma \approx \frac{x_{\text{max}} - x_{\text{min}}}{6} = \frac{2,05-1,45}{6} = 0,1$ м.

Нескорректированный объем выборки:

$$n = \frac{t^2 \sigma^2}{\Delta^2} = \left(\frac{1,96*0,1}{0,05}\right)^2 = 15,37 \approx 16$$
 чел.

Скорректированный на бесповторность отбора объем выборки:

$$n = \frac{n_0 N}{n_0 + (N - 1)} = \frac{15,37 * 4500}{15,37 + (4500 - 1)} = 15,32 \approx 16$$
 чел.

Задание 2

Аналогично **заданию 1** для тех же исходных данных найдите нескорректированный и скорректированный на бесповторность отбора объем выборки *на уровне значимости* 0,01 (с доверительной вероятностью 0,99).

Задание 3

Аналогично заданиям 1 и 2 для тех же исходных данных определите необходимый объем выборки для определения роста студентов Белорусского государственного университета физической культуры c точностью до $\Delta = 0.025$ м и c точностью до $\Delta = 0.005$ м. Для каждого случая определяйте нескорректированный и скорректированный объемы выборки на уровнях значимости 0.05 и 0.01.

Проанализируйте, как на необходимый объем выборки влияют:

- а) коррекция на бесповторность отбора;
- б) уровень значимости;
- в) требуемая точность.

Задание 4

Среди студентов Белорусского государственного университета физической культуры (N=4500 чел.) наименьшая масса тела выявлена $m_{\min}=40$ кг; наибольшая — $m_{\max}=112$ кг. Определите необходимый объем выборки для определения среднего значения массы тела студентов университета с точностью до:

0.5 KT;

1 кг;

2,5 кг;

5 кг.

Объем выборки определите:

нескорректированный на бесповторность отбора; скорректированный на бесповторность отбора на уровне значимости:

0,05;

0,01

Рассчитайте объемы выборок для всех возможных комбинаций представленных исходных данных (16 комбинаций). Полученные дробные значения округлите до целых *в большую сторону*.

Рекомендуемая литература

- 1. Сидоренко, Е. В. Методы математической обработки в психологии / Е. В. Сидоренко. СПб. : Социально-психологический центр, 1996. 350 с.
- 2. Шестаков, М. П. Статистика. Обработка спортивных данных на компьютере: учеб. пособие для студентов высш. учеб. заведений физ. культуры / М. П. Шестаков. М.: ТВТ Дивизион, 2009. 248 с.
- 3. Шупляк, В. И. Математическая статистика : курс лекций / В. И. Шупляк. Минск : РИВШ, 2011. 228 с.

ЗАНЯТИЕ 4 (2 часа)

Тема 6. Статистическая проверка гипотез

Задание

Две группы конькобежцев по 15 человек, тренировавшиеся с использованием разных методик, для сравнения полученных результатов

соревновались на дистанции 500 м. По результатам соревнований группы показали результаты $(\bar{x} \pm \sigma)$:

группа № 1: 54,23±4,69 с; группа № 2: 50,06±3,17 с.

Выборки, полученные в обеих группах, взяты из нормально распределенных совокупностей.

Докажите правомерность использования критерия Стьюдента для сравнения результатов и проверьте, является ли разница между результатами групп 1 и 2 случайной или закономерной.

Рекомендуемая литература

- 1. Сидоренко, Е. В. Методы математической обработки в психологии / Е. В. Сидоренко. СПб. : Социально-психологический центр, 1996. 350 с.
- 2. Шестаков, М. П. Статистика. Обработка спортивных данных на компьютере : учеб. пособие для студентов высш. учеб. заведений физ. культуры / М. П. Шестаков. М. : ТВТ Дивизион, 2009. 248 с.
- 3. Шупляк, В. И. Математическая статистика : курс лекций / В. И. Шупляк. Минск : РИВШ, 2011. 228 с.

ЗАНЯТИЕ 5 (4 часа)

Тема 6. Статистическая проверка гипотез

Задание

Получите у преподавателя индивидуальный вариант задания с методическим сопровождением и выполните в соответствии с инструкцией, используя непараметрические критерии Манна – Уитни и Уилкоксона.

Рекомендуемая литература

- 1. Сидоренко, Е. В. Методы математической обработки в психологии / Е. В. Сидоренко. СПб. : Социально-психологический центр, 1996. 350 с.
- 2. Шупляк, В. И. Математическая статистика : курс лекций / В. И. Шупляк. Минск : РИВШ, 2011. 228 с.
- 3. Грабарь, М. И. Применение математической статистики в педагогических исследованиях. Непараметрические методы / М.И. Грабарь, К. А. Краснянская. М.: Педагогика, 1977. 136 с.