ным (В.Н. Селуянов, С.К. Сарсания, К.С. Сарсания, Л.В. Слуцкий, Б.А. Стукалов). Для реализации этого теоретического направления была предложена новая наука — спортивная адаптология, являющаяся фундаментальной, обобщающая все основные данные и механизмы существования человека в условиях спортивной деятельности. Хотя в этом случае предложения тренера и ученого могут не совпадать с повседневной практикой, но они будут иметь такие характеристики, как научная (обоснованность, надежность), инновационность и эффективность. Поэтому перспективы развития научных и практических моделей спортсмена с учетом специфики вида спортивной специализации становится наиболее очевидной на современном этапе развития теории и практики спортивной тренировки.

УДК 796

Сержанова М.А.

Белорусский государственный университет физической культуры Республика Беларусь, Минск

АДАПТАЦИЯ ПРОГРАММЫ БИОМЕХАНИЧЕСКОГО КОМПЬЮТЕРНОГО СИНТЕЗА ДЛЯ ИССЛЕДОВАНИЯ ТЕХНИКИ ФЕХТОВАНИЯ

Serzhanova M.A.

Belarusian State University of Physical Culture Republic of Belarus, Minsk

ADAPTATION OF THE PROGRAM OF BIOMECHANICAL COMPUTER SYNTHESIS FOR THE FENCING TECHNIQUE INVESTIGATION

ABSTRACT. The article presents the results of adaptation of biomechanical computer synthesis programs for fencing techniques. As a result, a computer research program was developed to analyze the impact of joints control movements on achievement the target of technical and tactical actions with determination of their basics – elements of posture and motion control.

KEYWORDS: computer synthesis; fencing; techniques.

АННОТАЦИЯ. В работе представлены результаты адаптации программы биомеханического компьютерного синтеза для исследования технических приемов в фехтовании. В результате подготовлена программа компьютерного исследования, позволяющая анализировать влияние параметров управляющих движений в суставах на достижение цели технико-тактических действий с выявлением их основы — элементов осанки и управляющих движений.

КЛЮЧЕВЫЕ СЛОВА: компьютерный синтез; фехтование; техника.

В 2018 году на кафедре биомеханики были проведены предварительные исследования, связанные с оценкой возможности эффективного развития силы рук у

фехтовальщиц на основе использования фрикционных тренажеров со многими степенями свободы серии «Бизон-М». Полученные результаты были представлены на научной конференции молодых ученых кафедры биомеханики. В итоге проведенной работы была констатирована перспектива использования данного устройства в отношении развития силы мышц, обеспечивающих движения в лучезапястном, локтевом и плечевом суставах, являющихся ведущими при выполнении технико-тактических действий в фехтовании.

Однако для эффективного использования данной технологии в силовой тренировке спортсменов необходимо углубиться в технические аспекты движения фехтовальщиков, а также исследовать биомеханические закономерности выполнения технических действий с выявлением таких составляющих приемов, как элементы осанки и управляющие движения [1]. При этом основным методом, позволяющим установить указанные составляющие, является биомеханический компьютерный синтез [2], предполагающий определение параметров управляющих движений в суставах, таких как время и амплитуда их выполнения и использование этих данных в качестве основных переменных, обеспечивающих компьютерную имитацию двигательного действия в целом.

Целью данной работы являлась адаптация методики биомеханического компьютерного синтеза для исследования техники фехтования на саблях. Основной подход в решении указанной задачи заключается в определении реальных кинематических и динамических характеристик тела спортсмена, а также параметров выполняемого технического элемента. В ходе исследования были использованы следующие методы:

- анализ научно-методической литературы, связанной с техникой фехтования;
- педагогические наблюдения;
- скоростная видеосъемка;
- биомеханический анализ динамики позы.

В качестве объекта пробной адаптации был использован элемент атакующего действия, выполняемого из «стартообразной» стойки [3]. В ходе адаптации модели биомеханического компьютерного синтеза в первую очередь были определены масс-инерционные характеристики тела исполнителя. Здесь были использованы усредненные данные, полученные из уравнений регрессии [4].

Следующим этапом было исследование и описание в цифровой форме программы изменения позы. Эта задача решалась на основе скоростной (300 кадров в секунду) видеосъемки с использованием цифровой камеры EX-F1. В результате проведенного биомеханического анализа были установлены амплитуда и время выполнения суставных движений.

На заключительном этапе на основе полученных данных в программу биомеханического компьютерного синтеза были внесены адаптационные изменения, отражающие закон изменения позы для данного технического элемента, антропометрические и динамические параметры опорно-двигательного аппарата исполнителя. После чего в ходе отладки программы было синтезировано рассматриваемое двигательное действие и оценено его соответствие реальному исполнению данного технического элемента (рисунок).

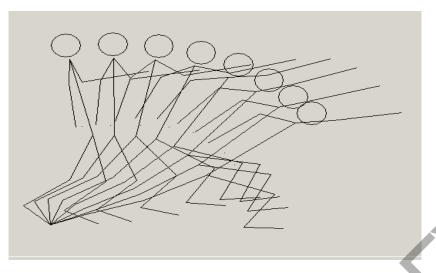


Рисунок — Результат адаптации программы биомеханического компьютерного синтеза для исследования техники фехтования

В результате исследования была подготовлена программа биомеханического компьютерного синтеза для исследования технических элементов фехтования с возможностью определения влияния параметров тела спортсмена и его суставных движений на особенности исполнения указанных элементов. Полученные результаты позволяют сделать вывод о возможности исследования фехтовальных движений при помощи биомеханического компьютерного синтеза с выявлением основных составляющих этих двигательных действий — элементов осанки и управляющих движений. Это позволит целенаправленно строить процесс развития двигательных качеств фехтовальщика, лежащих в основе успешной реализации техники данной спортивной дисциплины. В дальнейших исследованиях по данной теме будет анализироваться сравнительное влияние суставных движений на достижение цели различных фехтовальных приемов, позволяющее выявить наиболее важные из них и организовать впоследствии процессы педагогического воздействия с целью более эффективного использования потенциала опорно-двигательного аппарата.

- 1. Назаров, В. Т. Движения спортсмена / В. Т. Назаров. Минск: Полымя, 1984. 176 с.
- 2. Сотский, Н. Б. Биомеханика: учеб. для студентов специальности «спортивно-педаго-гическая деятельность / Н. Б. Сотский. Минск: БГУФК, 2005. С. 59–60.
- 3. Тышлер, Д. А. Спортивное фехтование: учеб. для вузов физической культуры / Д. А. Тышлер. М.: ФОН, 1997 г. 389 с.
- 4. Зациорский, В. М. Биомеханика двигательного аппарата человека / В. М. Зациорский, А. С. Аруин, В. Н. Селуянов. М.: Физкультура и спорт, 1981. 143 с